A simulation study of three methods for detecting disease clusters
نویسندگان
چکیده
BACKGROUND Cluster detection is an important part of spatial epidemiology because it can help identifying environmental factors associated with disease and thus guide investigation of the aetiology of diseases. In this article we study three methods suitable for detecting local spatial clusters: (1) a spatial scan statistic (SaTScan), (2) generalized additive models (GAM) and (3) Bayesian disease mapping (BYM). We conducted a simulation study to compare the methods. Seven geographic clusters with different shapes were initially chosen as high-risk areas. Different scenarios for the magnitude of the relative risk of these areas as compared to the normal risk areas were considered. For each scenario the performance of the methods were assessed in terms of the sensitivity, specificity, and percentage correctly classified for each cluster. RESULTS The performance depends on the relative risk, but all methods are in general suitable for identifying clusters with a relative risk larger than 1.5. However, it is difficult to detect clusters with lower relative risks. The GAM approach had the highest sensitivity, but relatively low specificity leading to an overestimation of the cluster area. Both the BYM and the SaTScan methods work well. Clusters with irregular shapes are more difficult to detect than more circular clusters. CONCLUSION Based on our simulations we conclude that the methods differ in their ability to detect spatial clusters. Different aspects should be considered for appropriate choice of method such as size and shape of the assumed spatial clusters and the relative importance of sensitivity and specificity. In general, the BYM method seems preferable for local cluster detection with relatively high relative risks whereas the SaTScan method appears preferable for lower relative risks. The GAM method needs to be tuned (using cross-validation) to get satisfactory results.
منابع مشابه
تحلیل زمان- مکان موارد سل ریوی در استان همدان با استفاده از خطر قابل انتساب جمعیت
Background and Objectives: One of the applications of population attributable risk percent (PAR%) is to estimate the disease burden in a population exposed to several risk factors. Therefore, this study was conducted to estimates the PAR% of the space-time clusters of pulmonary tuberculosis. Methods: In this study, the data of pulmonary TB cases were obtained from the health department of Ha...
متن کاملPlanar Molecular Dynamics Simulation of Au Clusters in Pushing Process
Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...
متن کاملA Novel Method for Detecting Targets on Inactive Radars Using an Adaptive Processing on the Ambiguity Function (RESEARCH NOTE)
In this paper a novel method for detecting targets in inactive radars is presented. In this method, the time history of cellsof the ambiguity function is used for detection. For this purpose, the cell history is considered as a random field. Then, using adaptive filter, the string time of the desired target are separated from the string time of noise and clusters in the environment. In order to...
متن کاملComparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital
Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...
متن کاملComparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital
Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Health Geographics
دوره 5 شماره
صفحات -
تاریخ انتشار 2006